1. Exercises from Sections 1.4-1.7

Problem 1. (Folland 1.5.8) If $S \subseteq \mathbb{R}^{n}$ is an infinite bounded set then S has an accumulation point
Proof. - Let $\left\{x_{k}\right\} \subseteq S$ be any sequence (it exists, since S is infinite)

- By theorem 1.19 since S is bounded there is a convergent subsequence $\left\{x_{k_{n}}\right\}$
- Let $a=\lim _{n \rightarrow \infty} x_{k_{n}}$; claim that a is an accumulation point of S.
- Let $\epsilon>0$ be given and consider $B(\epsilon, a)$. Pick N large enough that $\left|x_{k_{n}}-a\right|<\epsilon$ for all $n>N$, which we can do since $x_{k_{n}}$ converges to a. Then $x_{k_{n}} \in B(\epsilon, a)$ for all $n>N$
- This shows that every neighbourhood of a contains infinitely many points of S, therefore a is an accumulation point.

Problem 2. (Folland 1.5.10) Let $\left\{x_{k}\right\}$ be a bounded sequence in \mathbb{R}. Define the following:

$$
\begin{aligned}
\liminf _{k \rightarrow \infty} x_{k} & =\lim _{n \rightarrow \infty} \inf \left\{x_{k}: n \geq k\right\} \\
\limsup _{k \rightarrow \infty} x_{k} & =\lim _{n \rightarrow \infty} \sup \left\{x_{k}: n \geq k\right\}
\end{aligned}
$$

Try and explain to them what liminf and limsup are by drawing them the picture on the wikipedia article.

Claim: There exists subsequences $x_{k_{n}}$ and $x_{k_{m}}$ such that $x_{k_{n}} \rightarrow \lim \inf x_{k}$ and $x_{k_{m}} \rightarrow \limsup x_{k}$.
Proof: We'll do the proof for liminf and the limsup case is identical.

- Set $x_{k_{n}}=\inf \left\{x_{k}: k \geq n\right\}$.
- Sequence is bounded because x_{k} was bounded to begin with
- Sequence is monotone by construction
- By the monotone convergence theorem (theorem 1.16) the limit exists and is unique
- By definition, $x_{k_{n}} \rightarrow \liminf _{k \rightarrow \infty} x_{k}$ so that is the limit.

Problem 3. (Folland 1.5.12) Show that $\left\{x_{k}\right\}$ converges if and only if $\lim \sup x_{k}=\lim \inf x_{k}$, in which case the limit agrees with $\lim _{k \rightarrow \infty} x_{k}$

Forward direction: If $\left\{x_{k}\right\}$ converges, then any subsequence converges to the same limit; $x_{k_{n}}=$ $\inf _{n \geq k} x_{k}$ is such a subsequence whose limit converges to $\lim \inf x_{k}$ (and similarly for limsup).

Backwards direction: We assume that $\lim \inf x_{k}=\lim \sup x_{k}$ and apply the sandwich theorem. For every k we have the following inequalities:

$$
\inf _{n \geq k} x_{n} \leq x_{k} \leq \sup _{n \geq k} x_{n} \Longrightarrow \liminf x_{k} \leq \lim _{k \rightarrow \infty} x_{k} \leq \lim \sup x_{k}
$$

So x_{k} converges.
Problem 4. (Folland 1.6.2b) If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is everywhere continuous and $S \subseteq \mathbb{R}^{n}$ is bounded, then $f(S)$ is bounded

- Notice that $S \subseteq \bar{S}$ implies that $f(S) \subseteq f(\bar{S})$ so it suffices to show that $f(\bar{S})$ is bounded
- S bounded $\Rightarrow \bar{S}$ is bounded. There exists R such that $S \subseteq B(R, 0)$, then $\bar{S} \subseteq \bar{B}(R, 0)$, so fix some $\epsilon>0$ then $\bar{S} \subseteq B(R+\epsilon, 0)$.
- Now \bar{S} is closed and bounded, therefore compact by definition.
- f is now continuous on S, a compact set. The image $f(S)$ is compact, by theorem 1.22 , therefore bounded.

Recall a set S is disconnected if there exists sets S_{1} and S_{2} with disjoint closures such that $S_{1} \cup S_{2}=S$. Otherwise, a set is called connected.

Problem 5. (Folland 1.7.1) Show the following sets are disconnected: (1) A finite set of more than two distinct points (2) A hyperbola $x^{2}-y^{2}=1$ (3) $\left\{(x, y, z) \in \mathbb{R}^{3} \mid x y z>0\right\}$
(1) Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$, then set $S_{1}=\left\{x_{1}\right\}$ and $S_{2}=\left\{x_{2}, \ldots, x_{n}\right\}$. These are obviously disjoint and their unions are S.
(2) Let $S=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}-y^{2}=1\right\}$. The constraint implies $x= \pm \sqrt{1+y^{2}}$, so set $S_{1}=$ $\left\{(x, y) \in \mathbb{R}^{2} \mid x<0, x^{2}-y^{2}=1\right\}$ and $S_{2}=\left\{(x, y) \in \mathbb{R}^{2} \mid x>0, x^{2}-y^{2}=1\right\}$. (Draw a picture) This shows the set is disconnected.
(3) Let $S_{1}=\{(x, y, z) \mid x>0, y>0, z>0\}$ and $S_{2}=\{(x, y, z) \mid x<0, y<0, z>0\} \cup\{(x, y, z) \mid x<0, y>0, z<0\} \cup$ $\{(x, y, z) \mid x>0, y<0, z<0\}$, then these sets are disjoint and their union gives S.

Problem 6. (Folland 1.7.7) S is disconnected if and only if there is a continuous function $f: S \rightarrow \mathbb{R}$ such that $f(S)=\{0,1\}$

Forward: Pick S_{1} and S_{2} with disjoint closures such that S is the union. Define $f: S \rightarrow \mathbb{R}$ by $f\left(S_{1}\right)=0$ and $f\left(S_{2}\right)=1$. We claim that our function is continuous. First, a lemma:

Lemma 1.1. If $K \subseteq \mathbb{R}^{n}$ is compact, $A \subseteq \mathbb{R}^{n}$ is closed, and $A \cap K=\emptyset$ then there exists $\delta>0$ such that $|x-y| \geq \delta$ for all $x \in K, y \in A$.

Proof. Exercise for the reader.
Let $x \in S$, then either $x \in S_{1}$ or $x \in S_{2}$. If we fix $\epsilon \geq 1$ then $f(S) \subseteq B(f(x), \epsilon)$; otherwise, fix $1>\epsilon>0$ and suppose without loss of generality that $x \in S_{1}$ (if $x \in S_{2}$, then an identical proof will hold). Since a point is compact, \bar{S}_{2} is closed, and $x \notin \bar{S}_{2}$ by assumption of disconnectedness, by the lemma there exists $\delta>0$ such that $|x-y| \geq \delta$ for all $y \in \bar{S}_{2}$. This means that for any $S \cap B(\delta, x)=S_{1} \cap B(\delta, x)$, so we can always force $|f(x)-f(y)|=0<\epsilon$ so long as we pick $y \in B(\delta, x) \cap S$.

Backward: Suppose that we have a continuous function $f: S \rightarrow \mathbb{R}$ such that $f(S) \subseteq\{0,1\}$, then set $S_{1}=f^{-1}(0)$ and $S_{2}=f^{-1}(1)$ which are disjoint closed sets whose union is S.

