1. Exercises from Sections 1.4-1.7
PROBLEM 1. (Folland 1.5.8) If S C R™ is an infinite bounded set then S has an accumulation point

PROOF. e Let {1} C S be any sequence (it exists, since S is infinite)
e By theorem 1.19 since S is bounded there is a convergent subsequence {z,, }
e Let a = lim, o0 Tk, ; claim that a is an accumulation point of S.
e Let € > 0 be given and consider B(e,a). Pick N large enough that |z, —a| < e for all n > N,
which we can do since xy, converges to a. Then x, € B(e,a) for all n > N
e This shows that every neighbourhood of a contains infinitely many points of S, therefore a is
an accumulation point.
O
PROBLEM 2. (Folland 1.5.10) Let {xx} be a bounded sequence in R. Define the following:
1ikn_1>£1gka = n11_>n;0 inf {z : n >k}
limsupxy = lim sup {zg : n > k}
k—o00 n—oo
Try and explain to them what liminf and limsup are by drawing them the picture on the wikipedia
article.
— lim sup x.

Claim: There exists subsequences zj, and xj,, such that x, — liminf x; and zy,

m m

Proof: We’ll do the proof for liminf and the lim sup case is identical.
Set zg, = inf {z) : k > n}.

e Sequence is bounded because xj was bounded to begin with

e Sequence is monotone by construction

e By the monotone convergence theorem (theorem 1.16) the limit exists and is unique

By definition, zy, — liminfy_,o 2 so that is the limit.

PROBLEM 3. (Folland 1.5.12) Show that {xx} converges if and only if imsupxp = liminf zy, in

which case the limit agrees with limyg_, oo T

Forward direction: If {z;} converges, then any subsequence converges to the same limit; zj, =

inf,, > xy is such a subsequence whose limit converges to liminf z;, (and similarly for lim sup).

Backwards direction: We assume that liminf z; = limsup x; and apply the sandwich theorem.

For every k we have the following inequalities:

inf z,, <z < supwz, = liminfz; < lim z; < limsup zx
n>k n>k k—o0

So xj converges.

PROBLEM 4. (Folland 1.6.2b) If f : R®™ — R™ is everywhere continuous and S C R™ is bounded,
then f(S) is bounded

Notice that S C S implies that f(S) C f(S) so it suffices to show that f(.S) is bounded
S bounded = S is bounded. There exists R such that S C B(R,0), then S C B(R,0), so fix
some € > 0 then S C B(R +¢,0).

e Now S is closed and bounded, therefore compact by definition.

e f is now continuous on S, a compact set. The image f(S) is compact, by theorem 1.22, therefore
bounded.
Recall a set S is disconnected if there exists sets S and Ss with disjoint closures such that S;US; = S.

Otherwise, a set is called connected.



PROBLEM 5. (Folland 1.7.1) Show the following sets are disconnected: (1) A finite set of more than
two distinct points (2) A hyperbola a* — y* =1 (3) {(z,y, 2) € R*|zyz > 0}

(1) Let S = {x1,...,2xn}, then set S; = {x1} and Sz = {z2,...,z,}. These are obviously disjoint
and their unions are S.
(2) Let S = {(z,y) e R*|2? —y?> =1}. The constraint implies z = +4/1+ 2, so set S =
{(z,y) eR?*|2 < 0,22 —y®> =1} and Sy = {(z,y) € R?|z > 0,2 —y? =1}. (Draw a picture) This
shows the set is disconnected.
(3) Let S1 = {(z,y,2) |z >0,y >0,z > 0} and Sz = {(z,y,2) | <0,y < 0,z > 0}U{(z,y,2) |2 < 0,y > 0,z < O}U
{(z,y,2)|x >0,y <0,z < 0}, then these sets are disjoint and their union gives S.

PROBLEM 6. (Folland 1.7.7) S is disconnected if and only if there is a continuous function f : S — R
such that f(S) ={0,1}

Forward: Pick S; and Sy with disjoint closures such that S is the union. Define f : S — R by

f(S1) =0 and f(S2) = 1. We claim that our function is continuous. First, a lemma:

LEMMA 1.1. If K C R" is compact, A C R" is closed, and AN K = () then there exists § > 0 such
that |x —y| >0 forallz € K, y € A.

PROOF. Exercise for the reader. O

Let © € S, then either x € Sy or x € So. If we fix € > 1 then f(S) C B(f(z),¢€); otherwise, fix
1 > e > 0 and suppose without loss of generality that « € S; (if 2 € Sa, then an identical proof will hold).
Since a point is compact, So is closed, and = ¢ Sy by assumption of disconnectedness, by the lemma
there exists § > 0 such that |z —y| > § for all y € S5. This means that for any SN B(§,z) = S; N B(J, z),
so we can always force |f(z) — f(y)] = 0 < € so long as we pick y € B(d,z) N S.

Backward: Suppose that we have a continuous function f : S — R such that f(S) C {0,1}, then

set S; = f71(0) and Sy = f~1(1) which are disjoint closed sets whose union is S.



