
1. Exercises from Sections 1.4-1.7

Problem 1. (Folland 1.5.8) If S ⊆ Rn is an infinite bounded set then S has an accumulation point

Proof. • Let {xk} ⊆ S be any sequence (it exists, since S is infinite)

• By theorem 1.19 since S is bounded there is a convergent subsequence {xkn
}

• Let a = limn→∞ xkn
; claim that a is an accumulation point of S.

• Let ε > 0 be given and consider B(ε, a). Pick N large enough that |xkn
− a| < ε for all n > N ,

which we can do since xkn
converges to a. Then xkn

∈ B(ε, a) for all n > N

• This shows that every neighbourhood of a contains infinitely many points of S, therefore a is

an accumulation point.
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Problem 2. (Folland 1.5.10) Let {xk} be a bounded sequence in R. Define the following:

lim inf
k→∞

xk = lim
n→∞

inf {xk : n ≥ k}

lim sup
k→∞

xk = lim
n→∞

sup {xk : n ≥ k}

Try and explain to them what liminf and limsup are by drawing them the picture on the wikipedia

article.

Claim: There exists subsequences xkn
and xkm

such that xkn
→ lim inf xk and xkm

→ lim supxk.

Proof : We’ll do the proof for lim inf and the lim sup case is identical.

• Set xkn = inf {xk : k ≥ n}.
• Sequence is bounded because xk was bounded to begin with

• Sequence is monotone by construction

• By the monotone convergence theorem (theorem 1.16) the limit exists and is unique

• By definition, xkn
→ lim infk→∞ xk so that is the limit.

Problem 3. (Folland 1.5.12) Show that {xk} converges if and only if lim supxk = lim inf xk, in

which case the limit agrees with limk→∞ xk

Forward direction: If {xk} converges, then any subsequence converges to the same limit; xkn
=

infn≥k xk is such a subsequence whose limit converges to lim inf xk (and similarly for lim sup).

Backwards direction: We assume that lim inf xk = lim supxk and apply the sandwich theorem.

For every k we have the following inequalities:

inf
n≥k

xn ≤ xk ≤ sup
n≥k

xn =⇒ lim inf xk ≤ lim
k→∞

xk ≤ lim supxk

So xk converges.

Problem 4. (Folland 1.6.2b) If f : Rn → Rm is everywhere continuous and S ⊆ Rn is bounded,

then f(S) is bounded

• Notice that S ⊆ S implies that f(S) ⊆ f(S) so it suffices to show that f(S) is bounded

• S bounded ⇒ S is bounded. There exists R such that S ⊆ B(R, 0), then S ⊆ B(R, 0), so fix

some ε > 0 then S ⊆ B(R+ ε, 0).

• Now S is closed and bounded, therefore compact by definition.

• f is now continuous on S, a compact set. The image f(S) is compact, by theorem 1.22, therefore

bounded.

Recall a set S is disconnected if there exists sets S1 and S2 with disjoint closures such that S1∪S2 = S.

Otherwise, a set is called connected.
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Problem 5. (Folland 1.7.1) Show the following sets are disconnected: (1) A finite set of more than

two distinct points (2) A hyperbola x2 − y2 = 1 (3)
{

(x, y, z) ∈ R3 |xyz > 0
}

(1) Let S = {x1, . . . , xn}, then set S1 = {x1} and S2 = {x2, . . . , xn}. These are obviously disjoint

and their unions are S.

(2) Let S =
{

(x, y) ∈ R2 |x2 − y2 = 1
}

. The constraint implies x = ±
√

1 + y2, so set S1 ={
(x, y) ∈ R2 |x < 0, x2 − y2 = 1

}
and S2 =

{
(x, y) ∈ R2 |x > 0, x2 − y2 = 1

}
. (Draw a picture) This

shows the set is disconnected.

(3) Let S1 = {(x, y, z) |x > 0, y > 0, z > 0} and S2 = {(x, y, z) |x < 0, y < 0, z > 0}∪{(x, y, z) |x < 0, y > 0, z < 0}∪
{(x, y, z) |x > 0, y < 0, z < 0}, then these sets are disjoint and their union gives S.

Problem 6. (Folland 1.7.7) S is disconnected if and only if there is a continuous function f : S → R
such that f(S) = {0, 1}

Forward: Pick S1 and S2 with disjoint closures such that S is the union. Define f : S → R by

f(S1) = 0 and f(S2) = 1. We claim that our function is continuous. First, a lemma:

Lemma 1.1. If K ⊆ Rn is compact, A ⊆ Rn is closed, and A ∩K = ∅ then there exists δ > 0 such

that |x− y| ≥ δ for all x ∈ K, y ∈ A.

Proof. Exercise for the reader. �

Let x ∈ S, then either x ∈ S1 or x ∈ S2. If we fix ε ≥ 1 then f(S) ⊆ B(f(x), ε); otherwise, fix

1 > ε > 0 and suppose without loss of generality that x ∈ S1 (if x ∈ S2, then an identical proof will hold).

Since a point is compact, S2 is closed, and x /∈ S2 by assumption of disconnectedness, by the lemma

there exists δ > 0 such that |x−y| ≥ δ for all y ∈ S2. This means that for any S∩B(δ, x) = S1∩B(δ, x),

so we can always force |f(x)− f(y)| = 0 < ε so long as we pick y ∈ B(δ, x) ∩ S.

Backward: Suppose that we have a continuous function f : S → R such that f(S) ⊆ {0, 1}, then

set S1 = f−1(0) and S2 = f−1(1) which are disjoint closed sets whose union is S.


